黄晶说,综合起来,ASγ实验的这两项重要结果,分别从“拍电子伏特宇宙线加速器”的候选天体和超高能弥散伽马射线在银河系内的空间分布结果表明PeV宇宙线加速器在银河系内存在,是朝着解开高能宇宙线起源的“世纪之谜”迈出的重要一步。
黄晶表示,综合起来,ASγ实验的这两项重要结果,分别从“拍电子伏特宇宙线加速器”的候选天体和超高能弥散伽马射线在银河系内的空间分布结果,表明“拍电子伏特宇宙线加速器”在银河系内存在,是朝着解开高能宇宙线起源世纪之谜迈出的重要一步。
高能宇宙线起源是一个世纪未解之谜,被美国国家研究委员会列为21世纪11个最前沿的科学问题之一。宇宙线是来自宇宙空间的高能粒子流,主要由质子和其他原子核组成。通常低于几个PeV能量的宇宙线被认为主要产生于银河系内,而能将宇宙线加速到PeV能量的天体也被称为是“拍电子伏特宇宙线加速器”。
该超新星遗迹成为银河系中的一个候选“拍电子伏特宇宙线加速器”,为解开超高能宇宙射线的起源之谜打开了重要窗口。北京时间今天(3月2日)零时,相关观测结果在顶级学术期刊《自然天文》发表。
对这些观测结果的一个合理解释是:宇宙射线在超新星遗迹的激波中被加速到拍电子伏特能区,然后与附近的分子云碰撞产生中性π介子,随后π介子衰变产生超高能伽马射线。这个超新星遗迹因此成为银河系中一个“拍电子伏特宇宙线加速器”候选体,为解开超高能宇宙线起源的世纪之谜打开了一个宝贵的窗口。
黄晶表示,对这些观测结果的一个合理解释是:宇宙射线在超新星遗迹的激波中被加速到拍电子伏特能区,然后与附近的分子云碰撞产生中性π介子,随后π介子衰变产生超高能伽马射线。这个超新星遗迹因此成为银河系中一个“拍电子伏特宇宙线加速器”候选体,为解开超高能宇宙线起源的世纪之谜打开了一个宝贵的窗口。
自1912年发现宇宙射线以来,超高能宇宙线的起源问题至今未解,是一个世纪之谜。将宇宙射线加速到PeV(比地球上人造加速器的最高能量高100倍)能量的天体源被称为“拍电子伏特宇宙线加速器”(“PeVatron”),并被认为应该存在于银河系中。但是,由于宇宙射线带电荷,它们在传播的过程中会受到银河系磁场的偏转,到达地球时的方向已经不再指向源头了,因此无法通过宇宙线的方向来寻找这类加速器。
高能宇宙线起源是一个世纪未解之谜,被美国国家研究委员会列为21世纪11个最前沿的科学问题之一。宇宙线是来自宇宙空间的高能粒子流,主要由质子和其他原子核组成。通常低于几个PeV能量的宇宙线被认为主要产生于银河系内,而能将宇宙线加速到PeV能量的天体也被称为是“拍电子伏特宇宙线加速器”。根据理论模型,超新星遗迹、恒星形成区和银河系中心的超大质量黑洞等是候选的“拍电子伏特宇宙线加速器”。但迄今为止,并没有任何一个“拍电子伏特宇宙线加速器”得到观测证实,其主要困难在于,带电的高能宇宙线粒子在银河系传播的过程中其运动方向会被磁场偏转,无法通过直接探测搜寻其源头方向。